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THE PROBLEM OF THE NASH EQUILIBRIUM SITUATION 
IN A POSITIONAL n-PERSON GAME WITH A MEMORY* 

YU.E. CHISTYAKOV 

The approach of a pencil of trajectories to the terminal set, when the 
control side uses positional strategies with a memory and is ignorant 
of the discrete parameter IEI, on which both the dynamic system and 
the terminal set depend, is considered. The set of initial positions 
for which the problem is solvable is constructed. It is shown that this 
set can be constructed by solving several standard problems on approach 
in positional strategies without a memory and without undetermined par- 
ameters. It is also shown that the set has in a certain sense the bridge 
property which is typical for the solution of positional approach problems 
with undertermined parameters /l, 2/. By solving our problem, the 
results of /3/ on the necessary and sufficient conditions for the 
existence of an equilibrium situation in positional two-person differential 
games can be extended to the n-person case. The role of undertermined 
parameter is then played by the number of the player who deviates from 
equilibrium. 

1. The approach problem when an undetermined parameter is present. The 
approach problem, when a discrete parameter is unknown, is specified by the system 

dx,‘dt f F (i, z (t), t, u’ (t)), .z (to) = q, (i.1) 

u’ (t) E+E u (z (to, ~ir))r t E [zk. ZW), oh- E A 

we wishtoensurethat x(@)~M(i), vi~1. Here, ~EX=R', 4ET=[60,81,f-(1, 
2 3'. ., n), M (i) c X U'(E)E P, A = {zx, k = 0, 1, . . ., p' 1 to = TO < z1 < . . . < zP, = a}. 

In other words, the phase space is finite-dimensional Euclidean space X and the game is 
played in the time interval [to,61. The control side (player) uses piecewise constant 
positional strategies with a memory, which are specified by the pair (u, A). Here, u : x [to, 
-l+P is a function which associates with each trajectory r(to,t), realized at instant t, 

a value of the control u' (t) = u (r (tO,t)) of compacturn P in topological space; A are the 
instants at which the control side "switches" its control; M(i) are bounded sets which depend 
on the value of the unknown parameter iEI. For each fixed set i,x, t,u’ the many-valued 
function F takes the value F(i,x,t,u’), which is a bounded closed set in the sphere, radius 
R, of X. We assume that, for all subsets aC_ 1, the many-valued function 

P(a, 5, t, u')= 0 F (i, X, t, a’) 
iE(r 

is continuous with respect to t, I(' and satisfies a Lipschitz condition with respect to z in 
the Hausdorff metric. Notice that, if F (a, 5, t, u’) = QI for certain c,x, t, U'r it must be 

empty for all r', t’, U”. 
If we are given the initial position ro,to, the value of the unknown parameter ifZ:I, 

and the strategy uA, then system (1.1) uniquely generates a pencil of absolutely continuous 
trajectories X [i,ro,to, uA1, which satisfy the first equation in (1.1) for almost all tE lto,el. 

Definition 1.1. we shall say that the approach problem is solvable for cc: f and 
initial position so, to if, given any S,>O, there is a strategy UA which ensures that the 
entire pencil X[i,~o, to,~Al hits at instant 6 the 8-neighbourhood of the set M(i), where 
the inclusion must hold for all i E a. 

Denote by K(o)C X X T the set of initial positions so,&, for which the approach 
problem is solvable with fixed aC_f, or formally, 

K (u) = {ro, to I V8 > 0 3uA: X* [i, q, t,, uA1 c M(i) + 8, (4.2) 

ViE u} 
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Here and below, X@[i,~,,,t~,uAl is the pencil' of trajectories cut off at instant 6, and 
M(i)+6 is the &-neighbourhood of the set M(i). 

Notice that, if 0 consists of a single element, our problem reduces to the well-known 
approach problem /l/. In particular, the corresponding s&K(o) hasthebridge property, of 
which essential use is made for constructing the strategies UA which ensure encounter with 
the terminal set. 

We will study the properties of sets K(U) with (u I> 1, give a method for constructing 
these sets, and find the strategies UA which solve our problem. Our main interest is in 
the setK (I)and the corresponding strategies. 

Properties of the sets K(a). We shall show that the set K(O) has a number of typical 
properties of bridges in approach problems without unknown parameters. 

We note without proof the two following topological properties of these sets. 

Property 1.1. The set K(a) is a closed subset of the extended phase space X X 2’. 

Property 1.2. There is a quantity eo (6)+0 as 6 - 0 such that K (~,a) c K (0) i ED (a), 
where the set K(u,~) is given by (1.2) for fixed 6 > 0. 

Property 1.2 shows that, for small 8 the set K (cr,6) "deviates little" from K(o). 
If we are given crz I, the initial position xo,to, and strategy uA, we can consider, 

instead of pencils of trajectories X[i,zoto, uAl the pencil 

X [u, IO, to. uA] = f- X [i, JO, to, uh] 
iE0 

(W 

This is the set of trajectories which could be realized for any value of the parameter 
if IJ. 

It follows at once from the definition of system (1.1) that this set is the same as the 
set of absolutely continuous solutions of the differential equation in contingencies 

dx/dt E F(a, z, t, u(x(f0, Tk))). t E [yt~r Tk+dr z(fo)=xo (1.4) 

where, if the set F(u,z,t,u) happens to be identically equal to the empty set for some 0 
and all z,t,u', then the solution of Eq.(l..4) and the corresponding pencil (1.3) consist by 
definition of the single trajectory t(to,to),which is simply the initial position (zo,t~). 

It turns out that set K(u) is a bridge for these pencils. 

Property 1.3. If (xo, a)E K (u), then, given any e> 0, there is a strategy UA such 
that x [o, XO, to, uA1 c K (u) -+- E. (Here and below, the bar above a trajectory shows that it has 
to be regarded as a set of points in space X X T, through which it passes). 

Proof. Given E>O, let UA be a solution of problem (1.2) for fixed 6>0, chosen in 
such a way that e,(Q<ei2 (see Property 1.2). We shall assume that R~A~<e/Z, where IAl= 

max (tk+l - Q:k). Let x0 &,#) ISZS X fo,~~ t,,, uA1 and 
x 

zII = z,'p (&,,6) is the value of the phase vector 

of trajectory z,, (for@ at the instant zip E A. We shall show that then (zP,zP) E K (u) f e/2. 
For all trajectories starting at (+,T~) we define ~1 (r($, 0) = u (4, (z (z,, t))), where cp (5 (TPV 

0) = 20 00. zb) * t (Tp, 0. 
For asterisk denotes the "sewing together" of the trajectories at the point (ID, TPI. 

It then follows from (1.1) that 

Consequently, .Y+[~,I~,z~, ulA] C X* [f, q, to, uA1 C M(i) f 6, since UA 
definition, 

(+I. %J E K ((I, 8) C K (u) + e, (6) C K (a) -I- e/2 

Now let t E ($, T~+J. We then have 

(2' (to‘ % f) E (*p, $J + B 11 A 1 c; K (u) + 8 

which proires property 1.3. 

Construction of sets K(U). we shall show that the sets K(U) 
of the bridge construction problem 

solves (1.2). Hence, by 

7x7 I_\ \ xo~toIY6>03uA: X*[j,xo,to,uA]C:M(j)+6, 

can be obtained as solutions 

Thus, if CJ consists of a single element j, then, in order to construct w(e) we have to 
solve the approach problem with the set M(i). If e consists of more than one element, then, 
to construct W(a),we have to solve theproblemof keeping the pencil X [a, ZO, to, uA1, generated 
by system (1.41, inside the intersection of the previously constructed sets W (a’), d = n \ i, 
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i E 0. 
Notice that 

about the entire 

without a memory 

there are no undetermined parameters in these problems, so that information 

trajectory is redundant, and we can manage with the usual positional strategies 
to construct sets w(U). Thus the sets w(U), being the solutions of positional 

problems, will have the bridge property, as indicated by: 

Property 1.4. For each fixed 6>0, there are positional strategies without a memory 

~a'& (0. ?Z 1) and a sequence D < E,(h) <&,-r(6) < . . . < ~1 (6)(n = 1 I I), such that VUC_ I,(so, to) E 
w(G) f E,(6), where m = ) u 1, we have the condition 

XQ [j, 50, to, d&l c M (j) + 6, CT y {i) (1.6) 
W [u, ZO, to, ud’Aa1 + R II Aa II c W (u) + em-11 I u 1 = m > 1 

Now, using positional strategies vaOAa, ensuring inclusion (1.6), we construct positional 

strategies with a ,memory ~~a&', which will solve for fixed 6 > 0 our original problem (1.2) 

for all (IO, to)= K ((JO). 
In short, 

1)) :- ":p (XL, t), 

given S> 0, u0CI. We find strategy u~"~A~', by putting A*' ~ 46, u,+ (1. (t,, 

where zL 7 x1 (to, t), and we find the set uI, == I& (z (to, t), uo)zu,, as a result of 

the sequential procedure 

uh.+i= (jfzuh. I~(T~,T~+~)~ZX [j,zri, T , L.~*&]), Ic -0. 1. . . ..p - 1 

zh. x- zrk (to, t). ~~ E Aa, t E [TV, TV_,) 

I (to, t) = Z (t”, T1) * 1 (T1, T2) * . . * 3’ (T1,, t) 

By definition of strategy U~~~Aa , it clearly associates with each trajectory x(to, t) a 

value equal to the value taken by positional strategy VIP& at the end point (2' (to, t), t) of 

this trajectory. We then compute up recurrently at the instant t E [Tp,Tp+r) and indicate the 

complete set of unknown parameters of uo for which this trajectory could be realized. 

In particular, if (ro,tO) E W (u0) + Em, m = I uo /, i E (SO. x (to, 8)~ X [i, 20, to, uPAd, 96 (t (to, i), 

Go) = uo. then it follows at once from the definition that the strategy va*aAs, for 
inclusion (1.6) acts for entire time trajectory z t) . Consequently, 

z6 (t,), 6) E M (j) + 6, u0 = {j} (1.7) 
r (to, 8) + X /I Aa II c W (00) + e,,,-,, I (JO I -7 nt > 1 

Theorem 1.1. We have the equation K (00) z W (uo), where strategy UO~YAS. ensures the 

appropriate inclusion in (1.2) for fixed 6> 0 and for all initial positions (ZU, to)= K (uo)+ 

e, (6). where m = 1 uo I. 

Proof. With u. = {i}, sets K (j) and V5' (j) are equal by definition. Now let (ZO. to) E 

K(j)+ El(6). Condition (1.6) then holds, and hence, (1.2). Assume that the theorem is true 

for j 00 I< pl. We shall show that it then holds for 1 U, ] = m> 1. 

We first show that K (oO)E W(uo). If (ZO, ~O)F K (ue), then, by property 1.3, given any 

E>O, there is a strategy uA such that 

X [Uo, IO, to, uA1 C h’(uo) + E “,!;,K (ao\i) + E i-2 W (ue\i)-FE 

The last equation follows from the inductive assumption, so that, in accordance with the 

definition, (x0, to) E W (uo). 

We shall prove the reverse inclusion: W (uo)G K ((JO). It suffices to show that, if (Xo, to)E 

i%’ (00) + E, (6), z (to, 8) E X [i, zo, to, ucuOAa] for some i 6Z (Jo. then z* (to, !) E ?Vf (i) i 6. 

The first case is $0 (z(to, 6), uo) = u. Then, in accordance with (1.7). 

z (to, 6) c W (~0) + em-, r, n W (uo\j) + Em4 
jc37. 

By the inductive assumption, the last set is the same as the set 

jf10 K(Uo\i) + Em-1 c K(i) + El 

Consequently, ~9 (to,+)= M (i) -I- 6, since, by property 1.4, the section by the instant 6 

of set K (i) + el belongs to M(i) + 6. 
The second case is $~(.z(t0,6),uo)=U'C (70. Let p = max (k] $4 (.r(to,T1), a~) = (JO}. Then, 

up = uo, up,, c (Jo, I O,+I I = m’ < m, ems ), E-L. It follows from relations (1.7) that 

z (to, Q) + R II Aa II C & W (no\j) -L Em-1 
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Since u,+, C 00, we have UP+, E 00 \ i for some j, so that the latter set belongs to 

W($+,) + Gn'. Consequently, 

(%+1. %+dEbp. %P) + R*ll .&T II c W&l+,) + hn,. 

Thus the condition of the theorem hold for position (z~+~,~~+~), but only for u~+~c uo. 

Moreover, since strategy ub %+I Aa acts in the interval (T~+~, 6), then (1.2) holds by the in- 
ductive assumption, i.e., .z* (to, 6) E M (i) + 6, which proves the theorem. 

2. The problem of the equilibrium situation in a positional n-person game. 
The game is specified by the system 

ax/a = j (z, 1, ul’ (t),. . ., u,‘,(t)), x (to) = c&l 

Ui’ (t) r Ui (T (to* zR’))* t E Ittci, zl+1), ~~~ E Ai 
Ji (~1 Al,. . ., u,A,) = gi (x (@))-+ nlas i E I = (1, 2,. . ., n} 

(2.1) 

The game is played in a finite-dimensional space X in the time interval [to,61 ~[60,61= ?'. 
The players use piecewise-constant positional strategies with a memory, specified by the pair 

(pi, Ai), Ui : X [to, .I+ Pi is a function which associates with each trajectory z(to, t), realized 

at instant t, a value of control ui’ (t) of the compacturn Pi in topological space Ai 6 {zh.i, 

k = 0, 1, . . ., pi 1 t0 = TOi < Tli < * . . <zpii =6) are the instants at which the i-th player intends 
to "switch" his control. The function f, which defines the game dynamics, is assumed to be 

continuous with respect to its arguments, and satisfies the inequality ox (1 + Ilsll)> IIf@, 
t, U1’, . . .( U,‘)ll, for some x>o, and a Lipschitz condition with respect to x. Moreover, the 
many-valued' function 

F (u, I, t, Ul’. . . . ( un’) = rl (f (X7 tp 221’7 . . * * Ui”p . * . , U,‘) 1 Ui” E Pi) (2.2) ice 

constructed on the basis of the function f, is continuous with respect to U' = (ul’,...,un’), t 

and satisfies a Lipschitz condition with respect to x in the Hausdorff metric for every ,JE 

I. 
If we are given the initial position xo, to and the set of player's strategies1 UA = 

@LA,,. . ., u,A,,), then system (2.1) uniquely generates a trajectory x(.), and along with it,- 

the pay-off's are given by the third expression in (2.1). 

Definition 2.1. For initial position (xo,to) in game (2.1) we have an equilibrium 

situation if, given any E>O, there is a strategy UA = (u,A,, . . . . u,,A,) such that, for all 

iE I, we have the inequalities 

Ji (u,A,, . . ., ui"Ai", . . ., u,A,) < Ji &AI, . . ., ~i&r.. . > ‘A,&) + 81 Vui”Ai” (2.3) 

It can be shown that the existence of an equilibrium trajectory (ET) is uniquelyassociated 

with the existence of an equilibrium situation. 

Definition 2.2. Trajectory I* (.) is the equilibrium one for differential game (2.1) 

if, given any e>O, there is a set of strategies uA, generating trajectory x(.), for which, 

first, we have the inequality 

and second, we have inequality (2.3) of Definition 2.1. 

Our subject of further study is the ET's which, being limit elements of &-equilibrium 
trajectories, have several good mathematical properties. 

The necessary and sufficient condition for the trajectory to be an equilibrium one. It 
will be shown below that the problem of ET construction amounts to solving an auxiliary 

approach problem in the presence of an undetermined parameter, as described in Sect.1. 
We shall first define the ET in a more convenient form. It can be shown that the set 

of ET's remains unchanged if we require in Definition 2.1 that the divisions Ai of all players 
be the same, while the deviating player chooses all possible measurable programs. On the 
basis of this fact, the theorems on nkasurable choice, and on the continuity of the terminal 
pay-off functions, can provide the following equivalent definition of ET. 

Definition 2.3. Trajectoryx* (*) is an equilibrium trajectory if, given any e> 0, there 
is a set of strategies UA = (z+A,..., u,,A), generating trajectory x(s), for which, first, con- 
dition (2.4) holds, and second, for each iEZ, the entire pencil 'X[i,so,to,uAl hits at 
instant @ the e-neighbourhood of the corresponding set 

M (i) = 1X I gt (4 d Ri b* (6))) (2.5) 
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The definition of the pencil X[i,xo,to, uhl was given in Sect.1. 
It follows from Definition 2.3 that, if X* (.)is an ET, then, for an initial position 

xo, to, the approach problem of pencils Xii, xo, to, Udl with terminal sets M(i) is solvable in 
the presence of the undetermined parameter ie I. In Sect.1 the set of such initial positions 
was called x(Z) and was constructed by solving 2"- 1 auxiliary problems on (N-&f) approach 
without undertermined parameters and in ordinary positional strategies without a memory. 
Starting from the fact that L* (.)is an ET, we can also show that, for all intermediate 
positions (5* (t), t), as initial positions, the corresponding approach problem is solvable in 
the presence of an undetermined parameter if I. Thus, the entire ET X* (e) lies in the set 
K (I) c x T 7'. 

For, lets*(.)be an admissible trajectory (i.e., a trajectory which can approach as close 
as desired to a trajectory generated by a piecewise constant program 11' (0). Let (.z* (t), ti E K (I) 
for all 2 E;. [to, @I. Let the set of strategies uh solve the corresponding approach problem with 
sufficiently small E for initial position (+* (to), to). We showed at the end of Sect.1 that 
this set of positional strategies with a memory about the trajectory may be constructed on 
the basis of ordinary positional strategies uE6Ae, oGI, which might be arbitrarily chosen 
inside the P'-neighbourhood of KV), where E'>Q is sufficiently small. We now complete the 
definition of these positional strategies inside the e'-neighbourhood of the set h'(f) by 
putting them equal to the program strategies, which approximate up to 59 <e' the trajectory 
x* (.) considered. It can be verified directly that the strategy uA= (u~A~....,u,A~,l thus 
redefined satisfies all the conditions of Definition 2.3 and ensures satisfaction of the 
appropriate inequalities and inclusions up to F. 

We thus have: 

Theorem 2.1. The admissible trajectoryz" (.)is an equilibrium trajectory if and only if 
it lies entirely in the set K(f)C X X I’. 

This theorem is similar in form to the corresponding theorem of /3/, concerned with a 
non-antagonistic two-person positional game. 

solution of a differential game of simple type. We will consider a special case of 
differential game (2.1) in which the function f has the form f(ul',. ..,l&‘), i.e., does not 
depend on x and t, while the terminal functions gi are convex downwards. For this game we 
can construct the set K(Z) explicitly. 

The solution is based on three auxiliary lemmas, concerning the approach problem of 
simple type 

dxldt = f (U’, u’), I (to) = ZO, u’ F-_ P, u’ E Q 

The first player's task is to choose the nositional strategy which ensures, whatever the 
second player's moves, the encounter at instant 6 of all the trajectories with the convex 
terminal set M. 

Let W denote the maximum +-stable bridge inthis approach problem. 

Lemma 2.1. W is a convex set. 

Lemma 2.2. If (X0, t")E w, then the cone with vertex (x0, to) and base M is a &,-stable 
set and lies wholly in W. 

Lemma 2.3. Set W is given by the condition 

W={so,to~/V/jqj/=l <g,s)+(6--0)5(Q)~~~(q,z)l 

We omit the proofs. 
We return to the differential game of simple type. Following the general scheme outlined 

at the end of Sect-l, to construct the set K(I) we have to construct the sets K(U) con- 

secutively for all 0C_1. If the sets K (a\ i) have been constructed, then, to construct 

K (4, we have to solve an (A%'-_} approach problem, in which 

Let A (a) be the set of initial positions for which this approach problem is solvable 
with terminal set M(a), but without phase constraints, 

Theorem 2.2. K(e) = A (0) n N(Q) and is a convex set (K(0)= XX 2’). 

Proof. Assume that the theorem holds for all o'CO. We will show that it then also 
holds for u'= O. The fact that li: (of CA (0) 11 N (0) follows at once by the definition of K(u). 
Plow let (xO,tO)~ A(a)nN(o). By hypotheses, the sets K(o\i) are convex. The set A(o) is 
convex by Lemma 2.1. Consequently, the cone with' vertex (zo.tO) and baseM(o), first, lies 
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entirely in the set A (c)n N(o), and second, by Lemma 2.2, is a =,-stable set. Thus, for the 
initial position x0,&~ the approach problem with terminal set M(a) inside set N(u) is solvable. 
The theorem is proved. 

Corollary 2.1. K(f)=mg1~(5), where 
- 

A (5) = 6% fo I v I! q II = 1 (Q, aI> +- (6 - lo) 5 (5. q) q sup 
XEM (0) 

(4, X)} 

5(0, q) = min 
zLl’, . . ..Un’ max ((q, f, If E F (6, u;,.. .,u,,‘)) 

(2.6) 

The proof follows at once from Theorem 2.2. and Lemma 2.3. 
To sum up, for games of simple type, Theorem 2.1 on the necessary and sufficient conditions 

for a trajectory to be an equilibrium trajectory can be restated as follows. 

Theorem 2.3. The admissible trajectory z*(.) is an equilibrium trajectory for the 
simple game if and only if it lies wholly in each of the sets .4(u), defined by (2.6) and 
constructed for the terminal sets 

M (0) = ts 1 gi (4 d gi k* (@)A vi E 0) 
As an example, consider the game 

It is played on the plane. To be specific we assume that the players have no vector of 
common interests, i.e., there is no vector g such that (g,gi>>O, Vi. 

It can be shown that the function E(o,q) can be written for this problem in the form 

e (0) ill P It. where 
B (0) = min 5 (i), E (1) = r, - T2 - Q 

IEO 

The set A(o) can be specified as 

A (0) = @o> to IP W(~ - to), M (0)) $ - E (0)) 
M((I)=(zI Q?i,Z><(& z*(s),, ViEU) 

where p(e,+) is the distance between a point and a set, and r*(e) is the trajectory studied 
at equilibrium. 

Fig.1 

Thus the set K(I) is here a cone with vertex at +*(@,6), whose section by the instant 
to= 8-2 is shown in Fig.1. 
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